全空氣系統正在推動空調行業從“溫度調節”向“環境管理”轉型。傳統空調關注顯熱負荷,而全空氣系統通過集成濕度控制、空氣凈化與能量回收功能,實現了對潛熱負荷與空氣品質的同步管理。以丹特怡家“低碳之家”系統為例,其采用的地源熱泵技術,可使制冷COP值達到4.2,較風冷熱泵提升25%;冬季供熱時,系統通過土壤源換熱器吸收地下恒溫能量,能效比(COP)可達3.5,較燃氣鍋爐節能50%。此外,系統搭載的AI算法可根據用戶行為模式(如作息時間、溫濕度偏好)自動優化運行策略,進一步降低15%-20%的能耗。這種技術集成不但提升了用戶體驗,更推動了空調行業向綠色低碳方向演進。全空氣系統夏季送風溫度通常設定在14-16℃。低碳全空氣系統優化設計
全空氣系統通過精密優化管道布局與氣流組織設計,實現了室內噪音≤35dB (A) 的靜音效果。其關鍵高壓主機采用創新懸浮式減震技術,通過彈性支撐結構與阻尼材料的復合應用,將振動傳遞率大幅降低 82%,從源頭切斷噪音傳播路徑。配合消音風道的特殊設計 —— 風道內壁敷設多孔吸聲材料,結合漸變式管徑與導流葉片的流體力學優化,使出風口噪音較傳統空調系統降低 12dB (A)。清華大學建筑環境檢測中心 2024 年實測數據顯示,即便在系統最大負荷運行狀態下,臥室實測噪音值只為 28dB (A),相當于林間樹葉摩擦的輕柔聲響。這種靜音環境可使居住者深度睡眠時間延長 40%,腦電波中表征放松狀態的 α 波占比提升 25%,從生理層面明顯提高睡眠質量,為用戶打造靜謐舒適的休憩空間。溫潤全空氣系統風管保溫全空氣系統風機宜選用后向離心式葉輪。
全空氣系統在通風凈化行業的突破,在于解決了“新風量”與“能耗”的矛盾。傳統通風系統為保證新風量,需持續運行大功率風機,導致能耗激增。而全空氣系統通過熱回收技術(全熱交換效率≥75%),將排風中的熱量/冷量回收至新風,減少空調負荷。以廣州某商場為例,采用開利全空氣系統后,新風量從30m3/(人·h)提升至50m3/(人·h),但空調能耗只增加8%,遠低于行業平均的25%。系統還配備智能風閥,可根據室內CO?濃度自動調節新風比(當CO?濃度>1000PPM時,新風量自動增加30%),避免過度通風造成的能量浪費。此外,其風管采用鍍鋅鋼板+聚氨酯保溫層,漏風率<1%,確保送風效率。
在霧霾、沙塵暴等空氣污染事件中,全空氣系統的“密封+凈化”雙模式可快速構建室內安全島。當室外PM2.5濃度超過200μg/m3時,系統自動切換至內循環模式,通過HEPA濾網與活性炭吸附模塊,將室內PM2.5濃度控制在35μg/m3以下;同時,紫外殺菌模塊可對循環空氣進行持續消毒,避免病毒通過氣溶膠傳播。2024年春季沙塵暴期間,西安某小區安裝全空氣系統的住宅,室內PM2.5濃度較室外降低87%,居民呼吸道疾病就診率下降41%。這種“平急結合”的設計理念,為城市居民提供了應對空氣污染的可靠技術手段。全空氣系統室內噪音宜控制在35dB(A)內。
全空氣系統為老舊建筑環境升級提供了“微創式”解決方案。其模塊化設計可適配不同建筑結構,通過柔性管道與小型主機,實現“無破壞性”安裝。上海某百年歷史建筑改造項目中,施工團隊利用原有吊頂空間敷設管道,用7天完成系統部署,避免了傳統改造中的結構加固與管線重鋪工程。改造后,建筑室內溫度波動從±5℃降至±0.8℃,濕度穩定在50%±5%,PM2.5濃度長期保持在15μg/m3以下。這種“輕量化”改造模式,為城市更新中的歷史建筑保護提供了技術參考。全空氣系統靜壓箱設計可優化氣流組織。溫潤全空氣系統風管保溫
全空氣系統風管保溫層厚度需滿足防結露要求。低碳全空氣系統優化設計
全空氣系統正從民用領域向工業建筑拓展,為電子車間、制藥廠房等高潔凈度場所提供環境解決方案。在深圳某半導體工廠項目中,系統通過“FFU(風機過濾單元)+全空氣系統”的混合模式,使車間潔凈度達到ISO 6級(0.1μm顆粒物≤100萬級),較傳統FFU系統節能40%。其采用的變頻風機可根據生產負荷動態調節風量,避免“恒定高風量”導致的能源浪費;熱回收模塊可回收60%以上的排風能量,使新風處理能耗降低55%。這種“潔凈+節能”的雙重優勢,使全空氣系統成為工業建筑環境控制的新選擇。低碳全空氣系統優化設計