3.1.3 絕緣層剝切標記剝切長度:在距離半導電層剝切端面 50-80mm 處標記絕緣層剝切位置(根據接頭管長度調整)。剝切操作:用絕緣層剝刀沿標記處環切,深度控制在絕緣層厚度的 1/2-2/3,避免損傷導體;然后沿軸向緩慢剝除絕緣層,剝切后導體端面需與絕緣層端面垂直,無毛刺。3.1.4 導體清潔與修整去除氧化層:用細砂紙(800 目及以上)輕輕打磨導體表面的氧化層,打磨方向沿導體軸向,避免橫向打磨損傷導體;打磨后用無絨布蘸無水乙醇徹底清潔導體表面,直至無氧化粉末殘留。導體修整:若導體端面有毛刺,用銼刀(細齒)將其修平,確保導體截面平整、無尖銳凸起(避免壓接時刺破絕緣層)。通過高質量熔接強化接口穩定性,有效抵御外界環境干擾,保障電力持續供應。吉林10KV高壓電纜熔接頭施工團隊
7.1自動化熔接設備普及傳統熔接依賴人工操作(如導體對齊、壓力設定),效率低且質量受人員技能影響大。近年來,自動化熔接設備逐步應用,其優勢如下:自動對齊:設備配備視覺識別系統(攝像頭+AI算法),可自動識別導**置,實現精細對齊(偏差≤0.1mm),避免人工對齊的誤差。參數自適應:根據電纜型號與導體截面積,設備自動調取壓接壓力、加熱溫度等參數,無需人工設定,減少參數錯誤導致的質量問題。流程自動化:集成剝切、清潔、壓接、加熱功能,實現“一鍵熔接”,作業效率提升50%以上(傳統人工熔接1個接頭需30分鐘,自動化設備*需15分鐘)。吉林10KV高壓電纜熔接頭施工團隊接頭耐老化性強,長期使用性能穩定。
質量檢測:驗證熔接可靠性的關鍵環節高壓電纜熔接后需通過“外觀檢查-電氣性能檢測-機械性能檢測”三級核驗,確保熔接部位滿足電力系統長期運行要求(通常設計壽命≥30年),具體檢測項目與標準如下:1.外觀檢查(初步篩查)外觀檢查是**基礎的檢測手段,通過肉眼或放大鏡(10倍)觀察熔接部位,排除明顯缺陷,合格標準如下:熔接部位表面光滑,無裂紋、凹陷、毛刺或氧化斑;導體軸線對齊,無明顯彎曲(彎曲度≤1°/100mm);金屬溢出量(飛邊)≤2mm,且已修整平整;絕緣層與屏蔽層切口整齊,無損傷,與熔接部位的距離符合設計要求(通常≥10mm)。
2.1人員準備:資質與技能要求高壓電纜熔接屬于特種作業,操作人員的資質與技能直接決定熔接質量。根據《電氣裝置安裝工程電纜線路施工及驗收標準》(GB50168)要求,相關人員需滿足以下條件:資質要求:必須持有《特種作業操作證》(高壓電氣作業類別),且證書在有效期內;若涉及110kV及以上電壓等級熔接,還需通過廠家專項培訓(如接頭供應商提供的工藝認證)。技能要求:熟悉所操作電纜的結構特性(如XLPE電纜絕緣層的剝離技巧)、熔接設備的工作原理(如液壓熔接機的壓力調節),能識別熔接過程中的異?,F象(如絕緣加熱時的氣泡);具備基礎的電氣測試能力(如使用兆歐表檢測絕緣電阻)。安全意識:掌握高壓作業的安全規范(如停電、驗電、接地流程),了解觸電、火災等應急處理方法。聚焦高壓電纜熔接質量,守護電力傳輸安全!
高壓電纜熔接是保障電力系統安全穩定運行的**為關鍵環節,其**工藝圍繞 “精細控制、界面融合、質量核驗” 三大**目標,涵蓋前期準備、熔接操作、質量檢測三大階段,每個階段均有嚴格的技術規范與操作標準,以下從具體工藝環節展開詳細說明。一、前期準備:熔接質量的基礎保障前期準備的**是 “消除變量”,通過對電纜、工具、環境的標準化處理,避免外部因素影響熔接界面的穩定性,主要包括電纜預處理、工具校準、環境控制三大模塊。高壓電纜熔接,以品質贏得信賴!河北高壓電纜熔接頭設備定制公司
高壓電纜熔接,品質是準則!吉林10KV高壓電纜熔接頭施工團隊
2. 局部放電測試目的:檢測接頭內部的 “電場集中點”(如絕緣雜質、氣泡、屏蔽層斷口),局部放電會加速絕緣老化,是導致電纜故障的主要原因之一。標準要求:10kV 電纜接頭:在 1.73U?(U?為電纜額定相電壓)下,局部放電量≤10pC;35kV 電纜接頭:在 1.73U?下,局部放電量≤5pC;110kV 及以上電纜接頭:在 1.73U?下,局部放電量≤3pC;且在 1.3U?下穩定運行 30min,無明顯放電增長。檢測方法:采用 “超高頻(UHF)局部放電檢測儀” 或 “脈沖電流法檢測儀”;測試時將傳感器緊貼接頭表面(UHF 法)或串聯在回路中(脈沖電流法),施加電壓至規定值,記錄放電脈沖的幅值和頻次;若檢測到局部放電量超標,需拆解接頭檢查絕緣層是否存在氣泡、雜質,重新熔接后再次測試。吉林10KV高壓電纜熔接頭施工團隊