TS - 9853G 半燒結銀膠的一大有效特性是符合歐盟 PFAS 要求。PFAS(全氟和多氟烷基物質)由于其持久性和生物累積性,對環境和人體健康存在潛在風險。隨著環保法規的日益嚴格,電子材料符合 PFAS 要求變得至關重要。TS - 9853G 滿足這一要求,使其在歐洲市場以及對環保要求較高的應用場景中具有明顯優勢 。在電子設備出口到歐盟地區時,使用 TS - 9853G 半燒結銀膠能夠確保產品順利通過環保檢測,避免因環保問題導致的貿易壁壘和市場準入障礙。TS - 9853G 還對 EBO(Early Bond Open,早期鍵合開路)進行了優化。在電子封裝過程中,EBO 問題可能會導致電子元件之間的連接失效,影響產品的可靠性。銀膠導熱率高,設備運行更穩。新型燒結銀膠要求
在功率器件封裝中,即使經過多次熱循環和機械振動,TS-9853G依然能夠保持良好的連接性能,減少因EBO問題導致的產品失效,為功率器件的穩定運行提供了有力保障。在導熱性能方面,TS-9853G的導熱率達到130W/mK,處于半燒結銀膠的較高水平。這使得它在需要高效散熱的應用中能夠發揮出色的作用,能夠快速將電子元件產生的熱量傳導出去,降低芯片溫度,提高電子設備的性能和穩定性。它在固化過程中能夠形成更加均勻和穩定的連接結構,增強了銀膠與電子元件之間的結合力,從而提高了產品的長期可靠性。特種燒結銀膠制作TS - 9853G 抗 EBO,連接穩固。
銀膠的可靠性是評估其在電子封裝中長期穩定工作能力的重要指標。可靠性的評估指標包括耐溫性、耐濕性、耐老化性等。在高溫環境下,銀膠可能會發生熱分解、氧化等現象,導致性能下降。在高濕度環境中,銀膠可能會吸收水分,引起腐蝕和電氣性能惡化。耐老化性則反映了銀膠在長期使用過程中性能的穩定性。影響銀膠可靠性的因素眾多,銀粉的純度和穩定性會影響銀膠的導電和導熱性能的長期穩定性。有機樹脂的種類和質量也對銀膠的可靠性有重要影響,質量的有機樹脂能夠提供更好的粘結力和耐化學腐蝕性。此外,制備工藝和使用環境也會對銀膠的可靠性產生影響,如燒結溫度、固化時間等工藝參數控制不當,會導致銀膠內部結構缺陷,降低可靠性;而惡劣的使用環境,如高溫、高濕、強電磁干擾等,會加速銀膠的老化和性能退化 。
半燒結銀膠的半燒結原理是在加熱固化過程中,有機樹脂首先發生交聯反應,形成一定的網絡結構,將銀粉初步固定。隨著溫度的升高,銀粉表面的原子開始獲得足夠的能量,發生擴散和遷移,銀粉之間逐漸形成燒結頸,進而實現部分燒結。這種部分燒結的結構既保留了銀粉的高導電性和高導熱性,又利用了有機樹脂的粘結性和柔韌性,使其在電子封裝中能夠適應不同的應用場景。在汽車電子的功率模塊中,半燒結銀膠能夠有效地將芯片產生的熱量導出,同時在車輛行駛過程中的振動和溫度變化等復雜環境下,保持良好的連接性能 。不同銀膠型號,散熱效果有別。
與傳統散熱材料相比,高導熱銀膠的優勢明顯。傳統的散熱材料如普通硅膠,其導熱率較低,一般在 1 - 3W/mK 之間,無法滿足現代電子設備對高效散熱的需求。而高導熱銀膠的導熱率可達到 10W - 80W/mK,是普通硅膠的數倍甚至數十倍,能夠在短時間內將大量熱量傳導出去,很大提高了散熱效率 。在一些對散熱要求極高的應用場景中,高導熱銀膠的高導熱性能優勢更加突出。在數據中心的服務器中,大量的芯片同時工作會產生巨大的熱量,如果不能及時散熱,服務器的性能將受到嚴重影響。高導熱銀膠能夠將芯片熱量快速傳導至散熱系統,確保服務器在長時間高負載運行下的穩定性,提高數據處理效率 。高導熱銀膠,增強設備穩定性。制備燒結銀膠條件
微米銀膠成本低,消費電子適用廣。新型燒結銀膠要求
除了高導熱率,TS - 1855 還具有出色的附著力。它對各種模具尺寸的金屬化表面都能保持良好的粘附能力,在 260℃、14MPa 的條件下,其 DSS(Die Shear Strength,芯片剪切強度)表現優異。這意味著在高溫和高壓的工作環境下,TS - 1855 能夠可靠地將電子元件與基板連接在一起,確保電子設備在復雜工況下的穩定運行 。在射頻功率設備中,即使設備在高頻振動和溫度變化的環境中工作,TS - 1855 憑借其強大的附著力,依然能夠保證芯片與基板之間的緊密連接,維持設備的正常運行。新型燒結銀膠要求