在電池模塊中,高導熱銀膠能夠有效解決電芯散熱問題,提高電池的充放電效率和使用壽命;在電機控制器和逆變器中,半燒結銀膠和燒結銀膠能夠滿足其對散熱和可靠性的嚴格要求 。在 5G 通信領域,5G 技術的快速發展對通信設備的性能提出了更高的要求。銀膠作為散熱和電氣連接的關鍵材料,將在 5G 基站、終端設備等領域得到廣泛應用 。在 5G 基站的射頻模塊、天線陣列和功率放大器等部件中,高導熱銀膠、半燒結銀膠和燒結銀膠能夠有效解決散熱問題,保證信號的穩定傳輸,提高通信質量 。不同銀膠型號,散熱效果有別。制備高導熱銀膠
半燒結銀膠是 TANAKA 銀膠產品中的重要組成部分,其獨特的性能使其在特定領域有著廣泛的應用。這類銀膠的主要特性在于其燒結溫度相對較低,能夠在較為溫和的條件下形成導電路徑,這一特點使得它在一些對溫度敏感的電子元件封裝中具有明顯優勢。同時,半燒結銀膠的粘合力較強,能夠可靠地連接不同的材料,保證封裝結構的穩定性。以 TS - 9853G 為例,這款半燒結銀膠具有諸多亮點。首先,它符合歐盟 PFAS 要求,這在環保日益嚴格的現在具有重要意義。如何分類高導熱銀膠前景TS - 985A - G6DG,性能超卓。
在電子封裝領域,高導熱銀膠、半燒結銀膠和燒結銀膠都發揮著重要作用。高導熱銀膠常用于芯片與基板的連接,其良好的導熱性能能夠將芯片產生的熱量迅速傳導至基板,降低芯片溫度,提高芯片的工作穩定性和可靠性 。在消費電子產品中,如智能手機的處理器芯片封裝,高導熱銀膠能夠有效地解決芯片散熱問題,確保手機在長時間使用過程中不會因過熱而出現性能下降的情況 。半燒結銀膠在電子封裝中也有廣泛應用,尤其是在對散熱和可靠性要求較高的功率半導體器件封裝中。
TS - 1855 作為目前市面上導熱率比較高的導電銀膠,其導熱率高達 80W/mK,在眾多銀膠產品中脫穎而出。這一有效的導熱性能使得它能夠在電子封裝中迅速將熱量傳遞出去,有效降低電子元件的溫度,從而提高電子設備的性能和穩定性 。在汽車功率半導體模塊中,TS - 1855 能夠快速將芯片產生的高熱量傳導至散熱片,確保功率半導體在高負載運行時的溫度始終處于安全范圍內,避免因過熱導致的性能下降和故障。除了高導熱率,TS - 1855 還具有出色的附著力。它對各種模具尺寸的金屬化表面都能保持良好的粘附能力,在 260℃、14MPa 的條件下,其 DSS(Die Shear Strength,芯片剪切強度)表現優異。半燒結銀膠,汽車應用優勢凸顯。
高導熱銀膠的高導熱原理主要基于銀粉的高導熱特性。銀是自然界中導熱率極高的金屬之一,當銀粉均勻分散在有機樹脂基體中時,銀粉之間相互接觸形成導熱通路。電子在銀粉中傳導熱量的過程中,由于銀的自由電子濃度高,電子遷移率大,能夠快速地將熱量傳遞出去。有機樹脂基體起到了粘結銀粉和保護銀粉的作用,同時也在一定程度上影響著銀膠的綜合性能 。在電子封裝中,高導熱銀膠將芯片產生的熱量迅速傳導至基板或散熱片,從而降低芯片的溫度,保證電子設備的正常運行。高導熱銀膠,加速熱量傳導速度。如何分類高導熱銀膠前景
不同銀膠特性,適配不同場景。制備高導熱銀膠
高導熱銀膠導熱率在 10W - 80W/mK,滿足一般電子設備散熱需求,其導電性和可靠性也能滿足常規電子元件的電氣連接和穩定工作要求 。半燒結銀膠導熱率處于 80W - 200W/mK 之間,在具備較高導熱性能的同時,對 EBO 進行了優化,如 TS - 9853G 半燒結銀膠符合歐盟 PFAS 要求,為其在環保要求較高的市場應用提供了優勢 。燒結銀膠導熱率可達 200W/mK 以上,具有高可靠性和在高溫下的穩定性,像 TS - 985A - G6DG 高導熱燒結銀膠在航空航天等極端環境應用中表現優異 。制備高導熱銀膠