最大正向電流是二極管的一個重要參數。它表示二極管在正常工作情況下能夠承受的最大正向電流值。如果流過二極管的正向電流超過這個最大值,二極管可能會因為過熱而損壞。這個參數取決于二極管的材料、結構和封裝形式等因素。例如,大功率二極管通常具有較大的最大正向電流值,這是因為它們采用了特殊的材料和封裝設計,具有更好的散熱性能。在電路設計中,必須根據實際工作電流來選擇合適的二極管,確保二極管的最大正向電流大于實際工作電流,以保證二極管的安全可靠運行。肖特基二極管開關速度快、正向壓降小,適配高頻整流與開關電源場景。BAS40
二極管有多種封裝形式以滿足不同應用場景的需求。常用的插件封裝有DO-15、DO-27、TO-220等;常用的貼片封裝有SMA、SMB、SOD-123等。這些封裝形式不僅便于二極管的安裝和連接還提高了電路的集成度和可靠性。在使用二極管時需要注意其正負極的識別。一般來說負極會做一些標識以便于識別(如銀色環、色點等)。正確識別二極管的極性對于保證電路的正常工作至關重要。在正向特性的起始部分存在一個死區電壓區域。在這個區域內正向電壓很小不足以克服PN結內電場的阻擋作用因此正向電流幾乎為零。只有當正向電壓大于死區電壓后二極管才會正向導通電流隨電壓增大而迅速上升。HEF4043BT二極管的反向漏電流會隨溫度升高而增大。
摻雜工藝:摻雜是為了在硅中引入特定的雜質,形成P型或N型半導體。在制造P型半導體時,通常采用硼等三價元素作為雜質進行摻雜。這可以通過離子注入或擴散等方法實現。離子注入是將硼離子加速后注入到硅片中,其優點是可以精確控制雜質的濃度和深度;擴散法則是將硅片置于含有硼雜質的氣體環境中,在高溫下使雜質擴散到硅片中。制造N型半導體則使用磷等五價元素進行類似的摻雜操作。在形成P型和N型半導體之后,就是PN結的制造。這通常通過光刻和蝕刻等工藝來實現。光刻工藝就像在硅片上進行精確的繪畫,利用光刻膠和紫外線曝光等技術,在硅片上定義出需要形成PN結的區域。然后通過蝕刻工藝,去除不需要的半導體材料,精確地形成PN結。這個過程需要極高的精度,因為PN結的質量直接影響二極管的性能,如正向導通特性和反向截止特性。
熱敏二極管的電學特性隨溫度變化而明顯改變。其正向壓降與溫度呈近似線性關系,溫度升高時,正向壓降減小;溫度降低時,正向壓降增大。利用這一特性,熱敏二極管可用于溫度測量和溫度控制電路。在電子設備的溫度監測中,將熱敏二極管安裝在關鍵發熱部件附近,通過測量其正向壓降的變化,可精確計算出溫度值。在一些溫度控制系統,如空調、冰箱的溫控電路中,熱敏二極管作為溫度傳感器,將溫度信號轉換為電信號,反饋給控制系統,實現對設備溫度的精確調節,保障設備在適宜的溫度環境下穩定運行,廣泛應用于各種對溫度監測和控制有需求的場景。雙向觸發二極管可雙向導通,在晶閘管觸發電路中作為觸發器件,控制電路的通斷與功率調節。
發光二極管是一種將電能轉換為光能的半導體器件,工作時正向電流通過 PN 結,電子與空穴復合釋放能量,以光子形式發出光線。LED 具有發光效率高、壽命長、響應速度快、體積小、環保無污染等優點。其發光顏色由半導體材料和摻雜元素決定,涵蓋紅、綠、藍等可見光及紅外光波段。在照明領域,LED 已逐步取代傳統白熾燈和熒光燈,通過將多個 LED 芯片組合成燈珠、燈帶或燈具,可實現不同亮度和色溫的照明效果。此外,LED 還廣泛應用于顯示屏、指示燈、汽車照明等場景,其驅動電路需根據 LED 的伏安特性設計,確保穩定發光,同時通過 PWM 調光技術調節亮度,滿足多樣化的應用需求。變容二極管通過電壓改變結電容值。1.5SMBJ17CA-H
續流二極管可吸收感性負載的反向電動勢,保護繼電器、電機等元件。BAS40
肖特基二極管是一種基于金屬 - 半導體結的二極管,與普通 PN 結二極管相比,具有正向壓降小(約 0.3 - 0.5V)、反向恢復時間極短(幾乎為零)、開關速度快等明顯優勢。這些特性使其在高頻電路中表現出色,如在開關電源的同步整流電路中,肖特基二極管可降低導通損耗,提高電源轉換效率;在高頻逆變器、DC - DC 轉換器中,快速的開關特性減少了電路的能量損耗和電磁干擾。此外,肖特基二極管的低正向壓降也適用于低壓大電流的應用場景,如鋰電池保護電路。但肖特基二極管的反向耐壓一般較低,通常在 100V 以下,在選型時需根據電路的實際需求,權衡其性能優勢與耐壓限制,充分發揮其在高頻、低壓電路中的作用。BAS40