可根據果實生長高度自動調節機械臂升降。智能采摘機器人的機械臂升降系統集成了激光測距傳感器、傾角傳感器和伺服電機驅動裝置。激光測距傳感器實時掃描果實與機械臂末端的垂直距離,當檢測到果實生長位置變化時,將數據傳輸至控制系統。控制系統結合預先設定的果實高度范圍,通過伺服電機精確調節機械臂各關節的角度,實現機械臂的自動升降。在柑橘園中,不同樹齡的柑橘樹果實生長高度差異較大,從 1 米到 3 米不等,機器人可在 0.5 秒內完成機械臂高度的調整,確保末端執行器始終處于采摘位置。此外,該系統還具備防碰撞功能,當機械臂在升降過程中檢測到障礙物時,會立即停止運動并重新規劃路徑,避免損壞機械臂和果實。通過自動調節機械臂升降,智能采摘機器人能夠適應不同高度的果實采摘需求,提高作業的靈活性和效率。機器人的果實采收功能突出,這是熙岳智能技術優勢的有力證明。江蘇農業智能采摘機器人案例
操作界面簡潔,普通工人經過培訓即可上手控制。智能采摘機器人采用可視化觸控操作界面,主屏幕以大圖標和流程圖形式呈現功能,如路徑規劃、采摘模式切換、設備狀態監測等。新員工只需通過 30 分鐘的標準化培訓,即可掌握基礎操作:通過拖拽地圖標記點規劃采摘路線,點擊按鈕啟動自動避障功能,滑動屏幕調節機械臂抓取力度。系統內置語音提示功能,在設備啟動、故障預警等關鍵節點進行語音播報,輔助操作人員快速響應。在山東煙臺的蘋果種植基地,從未接觸過智能設備的果農經過簡單培訓后,便能操控機器人完成整片果園的采摘任務,降低了智能設備的使用門檻,推動農業智能化普及。北京現代智能采摘機器人優勢其機械臂設計巧妙,由熙岳智能精心打造,具備高靈活性和度。
其作業效率是人工采摘的 5 - 8 倍,大幅提升產能。在規模化種植的柑橘園中,人工采摘平均每人每天可收獲 800 至 1000 公斤果實,而智能采摘機器人憑借高速機械臂與識別系統,每小時可完成 1200 至 1500 公斤的采摘量,單日作業量可達 8 至 10 噸,相當于 8 至 10 名熟練工人的工作量。在新疆的紅棗種植基地,面對成熟期集中、采摘周期短的難題,10 臺智能采摘機器人組成的作業團隊,3 天內即可完成 500 畝紅棗園的采摘任務,較傳統人工采摘提前 20 天完成,有效避免因成熟過度導致的果實脫落損失。此外,機器人可 24 小時不間斷作業,配合自動分揀系統,形成采摘、分揀、裝箱一體化流程,進一步壓縮生產周期,助力果園實現產能翻倍。
智能采摘機器人的出現緩解了農業勞動力短缺問題。隨著城鎮化進程加快,農村青壯年勞動力大量涌入城市,農業勞動力短缺問題日益嚴峻,尤其在果實采摘高峰期,用工難、用工貴成為困擾果園經營者的難題。智能采摘機器人的誕生為這一困境提供了有效解決方案。一臺智能采摘機器人每小時的作業量相當于 5 - 8 名人工,且可 24 小時不間斷工作。在新疆的棉花采摘季,以往需要數千名拾花工耗時數月完成的采摘任務,如今通過智能采摘機器人組成的作業團隊,可在數周內高效完成。此外,機器人操作簡單,經過短期培訓的普通工人即可進行管理和維護,無需依賴專業的采摘技能。智能采摘機器人不填補了勞動力缺口,還降低了果園對季節性勞動力的依賴,保障了農業生產的穩定性和可持續性,推動農業向現代化、智能化方向發展。相比人工采摘,熙岳智能的采摘機器人提高了采摘效率,降低了人力成本。
集成 GPS 定位系統,能在大面積果園中準確定位。智能采摘機器人集成的 GPS 定位系統為其在大面積果園中的定位提供了基礎保障。GPS 系統通過接收來自多顆衛星的信號,計算出機器人在地球表面的精確經緯度坐標。結合果園的電子地圖數據,機器人能夠準確確定自己在果園中的具置。在大面積果園中,尤其是地形復雜、果樹分布密集的區域,準確的定位對于機器人的導航和作業至關重要。它可以幫助機器人按照預定的采摘路線行駛,避免迷路或重復作業。當多臺機器人協同作業時,GPS 定位系統還能實現機器人之間的位置共享和協同調度,合理分配采摘任務,提高整體作業效率。此外,果園管理者可以通過 GPS 定位信息實時掌握每臺機器人的工作位置和移動軌跡,便于進行統一管理和監控。即使在信號較弱的區域,GPS 定位系統結合慣性導航等輔助技術,依然能夠保證機器人的定位精度,確保其在大面積果園中穩定、高效地運行。熙岳智能在智能采摘機器人的研發中,注重多技術融合,提升機器人綜合性能。吉林自制智能采摘機器人售價
其研發的智能采摘機器人,在現代農業園區中發揮著重要作用,助力農業高效生產。江蘇農業智能采摘機器人案例
具有避障功能,遇到障礙物時自動繞行繼續作業。智能采摘機器人配備了多種傳感器,如激光雷達、超聲波傳感器、視覺攝像頭等,這些傳感器協同工作,構建起的環境感知系統。當機器人在果園中移動和作業時,傳感器會實時掃描周圍環境,檢測是否存在障礙物,如樹木、石頭、溝渠等。一旦檢測到障礙物,機器人的控制系統會立即啟動避障程序。首先,根據傳感器獲取的障礙物位置、形狀和大小等信息,運用路徑規劃算法重新計算出一條安全的繞行路徑。然后,機器人會按照新規劃的路徑自動調整行進方向,避開障礙物,繼續執行采摘任務。在繞行過程中,傳感器會持續監測周圍環境,確保在遇到新的障礙物或環境變化時,能夠及時再次調整路徑。這種高效的避障功能使智能采摘機器人能夠在復雜的果園環境中自由穿梭,有效避免碰撞和損壞,保障了機器人的安全運行和采摘作業的連續性。江蘇農業智能采摘機器人案例